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The potential-energy functions 'Pv(qiJEafJ) and 'Po(q,EafJ) 
can be expanded as Taylor series in the strain just as 
in the development beginning with Eq. (4) and leading 
to Eq. (16). The result is 

n. (EafJ) ( 1 ) 
---= exp - L WafJEafJ , 

n. kT a.fJ 
(40) 

where 

For the special case of uniform compression or ex­
pansion, Eqs. (40) and (41) become 

n.(e) 
__ =e(3w/kT)., (42) 
n.o 

(43) 

where E is the volume strain. 

IV. PROOF THAT THE STATISTICAL AVERAGES 
«a~/ aE)qi . O ) DO NOT VANISH 

The preceding theory depends on the statistical aver­
ages of the derivatives of the potential energy of the 
crystal with respect to strain. It has been assumed that 
these averages are not zero, and that a first-order ex­
pansion in the strains is therefore adequate for small 
strains. This assumption can be justified by expanding 
the crystal energy in normal coordinates. The sta­
tistical averages of interest all have the form 

f· .. f e-<p/kT If dq;, (44) 

Now perform a coordinate transformation according to 
the following definition: 

(52) 

Then, after a few simple algebraic manipulations, Eq. 
(51) becomes 

fOO exp( -u?/2kT)du; (53) 
-00 

where 'P is the total potential energy of the crystal as 
a function of all the coordinates qi> and the subscript 
zero means that the derivative is evaluated at zero 
strain. If the q; are taken to be the normal coordinates, 
'P can be written to the second order as 

'P= 'P(O)+t L; w;q;, (45) 

where 'P(O) is the potential energy when all the atoms 
are at their mean positions, and the Wj are the normal 
mode frequencies. Differentiating Eq. (45) with respect 
to strain gives 

(46) 

and, since at zero strain the first term on the right is 
zero, 

(47) 

For the purposes of this discussion, E will be taken to 
be the strain corresponding to uniform compression or 
expansion; so that for small strains the volume is given 
by 

V= Vo(1+3e), (48) 

Vo being the volume at zero strain. Introducing the 
Griineisen parameter "Ii by the r.elation 

d lnWj/ d In V = -"Ii> (49) 

where the "I; are a set of positive constants, and using 
Eq. (48), Eq. (47) becomes 

( d'P) = -3l;: "I;w;q;. 
dE 0 I 

(50) 

Substituting Eqs. (45) and (50) into Eq. (44) gives 

f· .. f exp( - 2~T ~ w;q; ) II dq;. (51) 

and performing the integrations gives 

(54) 

Equation (54) shows that the averages of the first 
derivatives are never zero and that these averages are 
proportional to the temperature. 

It is extremely difficult to make any a priori decisions 
concerning the signs of mafJ and WafJ defined by Eqs. 
(15) and (41). Such a decision requires a detailed in-
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vestigation of the variation of localized normal mode 
vibrations with strain in the vicinity of a defect. How­
ever, on the basis of general physical considerations, it 
is to be expected that both ma(j and Wa(j are positive. 

V. EFFECT OF PRESSURE ON DIFFUSION 
CONSTANT 

Using Eqs. (1), (21), and (42), and the fact that the 
lattice parameter in the straiDed system is (1+ e) times 
the lattice parameter in the unstrained system, the 
relation between the diffusion coefficients in the strained 
and unstrained systems for uniform compression or 
expansion is 

D(e)=Du(1+e)2 exp(:3e). (55) 

where D .. is the diffusion coefficient in the unstrained 
system, and M is given by 

M =m+w (vacancy mechanism), (56) 

M =m (interstitial, ring or 
exchange mechanis.m). (57) 

In terms of the volume strain, e=H~VIVo) for small 
strains, where ~ V is the initial volume, so that Eq. (55) 
takes the form 

Therefore, it is evident that a plot of In[D(~VIVo) 
X (1+~VIVo)-JJ against ~VIVo should be linear with 
a slope a given by 

a=MlkT, (59) 

and an intercept given by lnDu. 
Several investigators have obtained data on the 

variation of the diffusion coefficients with pressure that 
is suitable for testing Eq. (58). Reference 2 presents 
data for the self-diffusion coefficient as a function of 
pressure for sodium, phosphorous, and mercury up to 
pressures of 12000, 4000, and 8000 atmospheres, re­
spectively. The self-diffusion coefficient of liquid gallium 
up to pressures of 10000 atmospheres is given in 
reference 3. The self-diffusion coefficient for single­
crystal zinc up to pressures of 10 000 atmospheres for 
diffusion in the directions parallel to and perpendicular 
to the c axis is given in reference 1. The self-diffusion 
coefficient of lead up to pressures of 8000 atmospheres 
at two temperatures is given in reference 5. 

The electrical conductivities of silver chloride and 
silver bromide have been measured as a function of 
pressure up to 300 atmospheres.4 Since in these silver 
halides it has been shown that the conductivity de­
pends almost entirely on the mobility of the silver ion, 
the conductivity is proportional to the diffusion co­
efficient of the silver ion by the Nernst-Einstein rela-

tion, and the data of reference 4 are suitable for testing 
Eq. (58). 

Plots of the variation of the quantity oflog[D(~ VIVo) 
X(l+~VIVo)-JJ against ~VIVo for the self-diffusion 
of sodium, phosphorous, mercury, gallium, and lead 
are shown in Fig. 1. The quantities 10g[D(~ VIVo) 
X(l+~VIVo)-JJ for single-crystal zinc were plotted 
against the fractional change in lattice parameter ~A/A, 
since this is a more natural unit for discussing diffusion 
in anisotropic crystals and the linear compressions 
perpendicular and parallel to the c-axis are available. 
The zinc data are plotted in Fig. 2. 

Figure 3 gives 10g(1IR) plotted against ~VIVo for 
silver chloride and silver bromide, where R is the re­
sistivity. The volume change ~ VIVo is small enough 
for the pressure range considered so that (l+~VIVo)-f 
does not appreciably affect the results and can be 
ignored. 

Compressibility dataU- 16 Were used to obtain the 
appropriate value of ~ VIVo for zinc, sodium, mercury, 
lead, silver chloride, and silver bromide. For gallium, 
~VIVo was computed from the data of Richards and 
Boyer17 assuming that the form of ~ VIVo as a function 
of pressure is the same as that for mercury. The values 
of ~VIVo for white phosphorus were computed from 
data in reference 16 assuming that the variation of the 
fractional volume change with pressure has the same 
form as that observed18 for black and red phosphorus. 

In all cases, the available compressibility data were 
extrapolated to the diffusion temperature. 

The linearity of the plots presented in Figs. 1 to 3 
shows that the form of Eq. (58) is valid for those sys­
tems investigated within the probable inaccuracies of 
the experiments and the calculations. 

The slopes of the plots are given in Table I, where 
a=Ml kT and aT are shown for the various materials. 

The fact that aT is so much smaller for the liquid 
metals than for any of the solids including sodium is 
indicative of the difference in the mechanism of dif­
fusion in liquids and solids. In a liquid, the atoms are 
not constrained to remain at lattice positions, so that 
diffusion occurs by a cooperative process involving the 
migrating atom and its nearest neighbors. Thus, the 
change in the interatomic forces can be kept to a mini­
mum throughout the diffusion process, and consequently 
aT would be very low. 

From Eqs. (54) and (59) it is seen that a should be 
temperature independent. For the self-diffusion of lead 
for which pressure data are available at two tempera­
tures, the value of a is reasonably constant. 
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